

Focused Energy: Pioneering Laser-driven Inertial Fusion Energy

Focused Energy Adrian McFarland – Engineering Director July 2024 URANIA Science Center – Berlin

Focused Energy – Company Profile

July 2021 Focused Energy Foundation

German GmbH and U.S. Inc. company

offices in North California and Darmstadt, Germany

>70 employees

Laser-driven inertial fusion

Our path to commercial fusion power

Proven approach

→ Demonstrated ignition science with established core laser driver technology.


Modular & reliable

- \rightarrow Scalable, repairable, and dependable.
- → A component-driven system that is easy to service compared to fully integrated approaches.
- \rightarrow Cost-effective: no downtime or less maintenance costs.

Commercial today

- → Modular laser technology and top-tier particle physics expertise enable current commercial opportunities.
- → Establishing manufacturing capabilities to reduce costs ahead of anticipated fusion demand.

Laser-driven IFE power plant

Fully modular, manufacturable, replaceable lasers with external commercial applications today.

Key Technologies in Laser Fusion

High-Power Lasers

→ High-intensity lasers that deliver precise and powerful energy pulses to initiate fusion.

Target mass manufacturing

→ Advanced techniques for mass manufacturing high-quality DT-fusion targets.

Target injection and Tracking

→ Al-driven tracking systems that ensure precise alignment and positioning of injected targets.

Precision target Design

→ Advanced techniques for highquality fusion targets with enhanced performance.

Diagnostics and Control Systems

→ Sophisticated monitoring and control systems to optimize fusion reactions and ensure machine, personnel and environmental safety.

Reactor Chamber

 \rightarrow Advanced design to withstand harsh environment conditions and longevity while housing and facilitating the fusion reactions.

Tritium Breeding

→ Techniques for breeding tritium from the reactor to ensure a sustainable and continuous fuel cycle.

Advanced Materials

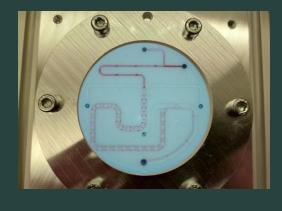
→ Development of materials that can withstand extreme temperatures, radiation and neutron flux in fusion reactors

Our Innovations in Laser Fusion

Precision Target Design

→ Advanced techniques for producing high-quality fusion targets with enhanced performance.

Integrated Target Tracking


→ Al-driven tracking systems that ensure precise alignment and positioning of targets.

Laser Stability

 \rightarrow Innovative methods for enhancing laser stability, ensuring consistent and precise energy delivery and tracking.

Target Mass Production

→ Advanced techniques for producing high-quality fusion targets with enhanced performance.

Laser Efficiency

→ Breakthroughs in laser efficiency using Diode Pumped Solid State Lasers.

Automated Target Injection

 \rightarrow Cutting-edge systems for rapid and accurate target delivery into the fusion chamber.

Integrated Control Systems

 \rightarrow Advanced Al-driven control systems that provide real-time adjustments to maintain optimal fusion conditions.

Material Innovation

 \rightarrow Next-generation materials designed for higher durability and thermal resistance and stress to reduce maintenance.

Tritium Breeding Optimization

 \rightarrow Innovative approaches to maximize tritium production and recycling within the reactor.

Collaboration drives innovation

National Labs

- ✓ GSI Helmholtz
- Lawrence Livermore National Lab (LLNL)
- ✓ Los Alamos National Lab (LANL)
- Princeton Plasma Physics Lab (PPPL)
- Laboratory for Laser Energetics (LLE)
- ✓ Fraunhofer ILT
- Fraunhofer Institute for Optics and Finemechanics (IOF)
- ✓ Laser Zentrum Hannover (LZH)

Universities

- Technische Universität Darmstadt (TUDa)
- University of Michigan
- Imperial College IC Consultants

/

 University of California San Diego

Industry Partners

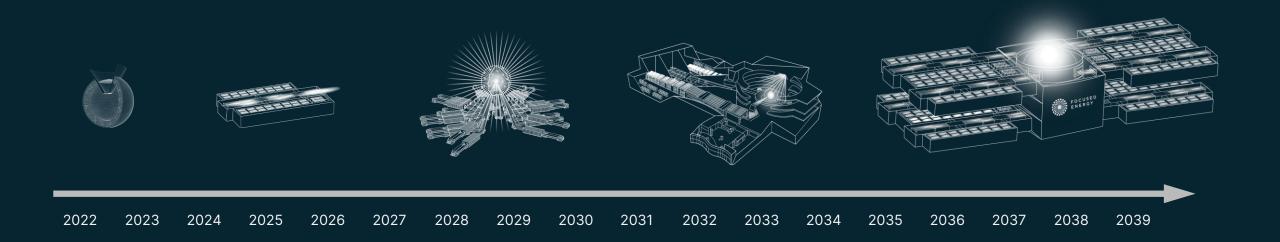
- ✓ Schott North America, Inc.
- Extreme Light Infrastructure (ELI) Beamlines
- ✓ Trumpf Lasers SE
- ✓ Oxford Sigma Ltd.
- ✓ Leonardo Electronics US, Inc.
- ✓ RWE
- ESS Bilbao
- ✓ Layertec GmbH
- ✓ LASEROPTIK GmbH
- ✓ Heraeus Quarzglas GmbH & Co. KG
- Schott AG
- < ...

Maturity Path development

Target Lab

Foundational Tech 2022-2032

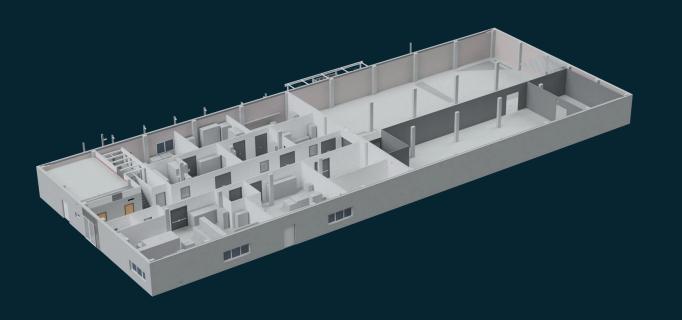
SP/LP Beamline


Foundational Tech 2024-2026 Sub-Scale Facility Integrated Implosion Facility 2026-2030

sion Pilot Plant

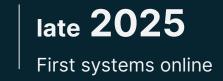
Energy and Commercial Validation 2031-2039

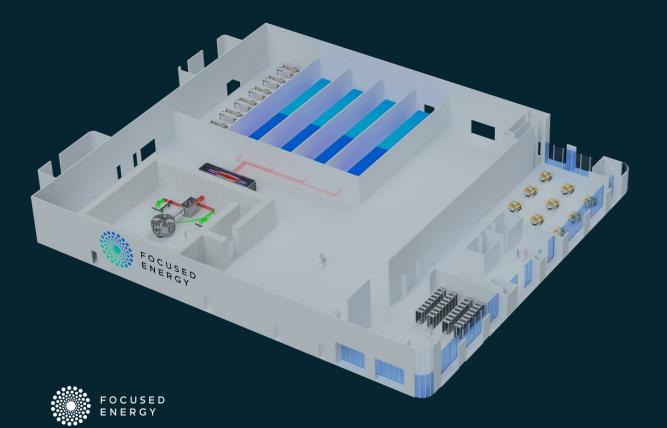
Commercial Laser Fusion Plant Fusion Energy to the Grid

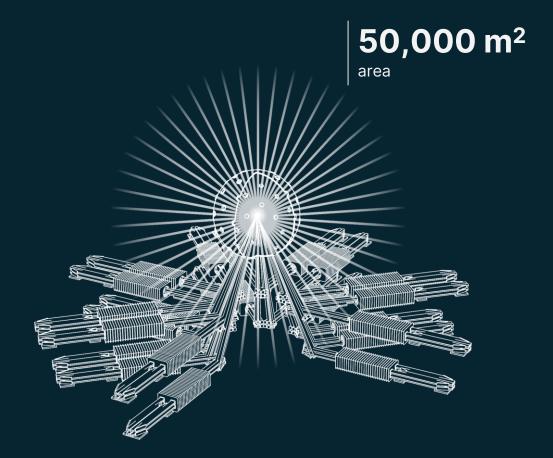

2039 onwards

2024 - Target Manufacturing

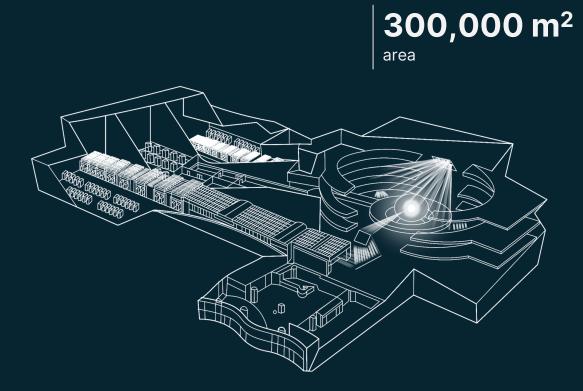
From Lab to scalable production


Expansion of target production


- ✓ micro-milling
- ✓ laser, coating
- ✓ metrology
- robots for target injection


5000 m² in North California

3 Lasers	Laser
with overall 3 kJ	Diagnostics
→ Up to 14 large (Ø ≥200 r	Systems
 → Op to 14 large (9 22001	High voltage
and → up to 40 small optics → 5 gratings	Pulsed power
Integrated control	Robotic
systems & Safety	targetry
systems	system
Beam Transport	Auxiliary systems


2026 - 2031 - Sub-Scale Facility =

32 to 48 Lasers with overall up to 50 kJ	Chamber → First wall → Blanket
 → approx. 640,000 diodes → approx. 224 large (Ø ≥200 mm) and 	Diagnostics
 → up to 640 small optics → approx. 50 gratings 	System Integration

2031 – 2039 Fusion Pilot Plant

1,500 Lasers	Chamber
with approx. 2 MJ	\rightarrow First wall
\rightarrow approx. 20 mln. diodes	\rightarrow Blanket
→ approx. 7k large (Ø ≥200 mm), approx. 20k small optics	Diagnostics
→ >3,000 of large aperture, high quality non-linear crystals	System
\rightarrow Up to 1,500 gratings	Integration

2026 - Pilot system launches commercialization

at former nuclear power plant in Biblis to demonstrate industrial scale

- → Development of a scalable and industrialize solution of commercial laser-driven imaging system for nuclear waste scanning
- → Our Laser-plasma interaction paves the way for pioneering commercial applications.
- → Collaborating with partners, we are poised to commercialize these innovations.

Startups are the catalyst 4 Fusion!

Government programs

BUNDESAGENTUR FÜR SPRUNGINNOVATIONEN

> Bundesministerium für Bildung und Forschung

Industry Associations

- ✓ Fusion Industry Associations
 - \rightarrow FIA Fusion International Association
 - \rightarrow Pro Fusion Germany
 - → Euro Business Fusion
 - \rightarrow FuseNet Association
 - → Fusion Industrial Liaison Office (FILO)
 - \rightarrow Fusion4ENERGY (F4E)
- ✓ European Commission
 - → Horizon programme
 - → European Innovation Council
 - \rightarrow EU SCALING CLUB
- European Atomic Energy Community (Euratom)
- ✓ IATA
- < ...

Industry and private partners

- ✓ Schott North America, Inc.
- ✓ Trumpf Lasers SE
- ✓ Oxford Sigma Ltd.
- ✓ Leonardo Electronics US, Inc.
- ✓ RWE
- ✓ ESS Bilbao
- ✓ Layertec GmbH
- ✓ LASEROPTIK GmbH
- ✓ Layertech
- ✓ Heraeus Quarzglas GmbH & Co. KG
- ✓ Schott AG

Early Commercialization

- Targetry
- ✓ LDRS
- ✓ Lasers (Labs)

ARE YOU SET?

Stable supply chains and Partnerships are the surest path to fusion

Support us in our road to Fusion!

