

THE ITER PROJECT UPDATING THE BASELINE

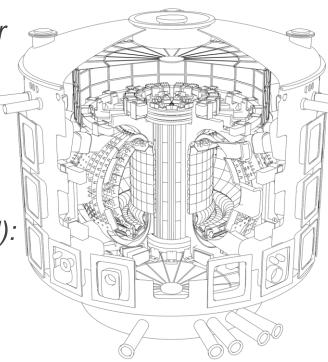
Alain Becoulet, DDG Chief Scientist, on behalf of Pietro Barabaschi, Director-General 3 July 2024

china eu india japan korea russia usa

PRESS CONFERENCE TOPICS

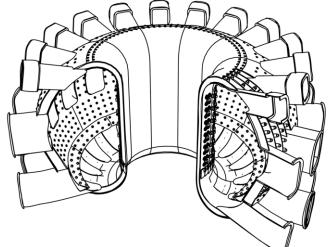
➢ Baseline: what and why

Comparison of previous and new baseline approaches


Introduction of the New Baseline schedule

WHAT GOES INTO MAKING A "PROJECT BASELINE?"

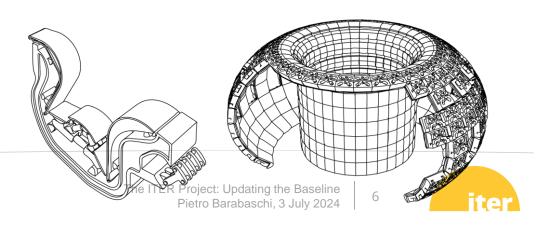
To construct ITER requires us to account realistically for the challenges of a First-of-a-Kind machine.

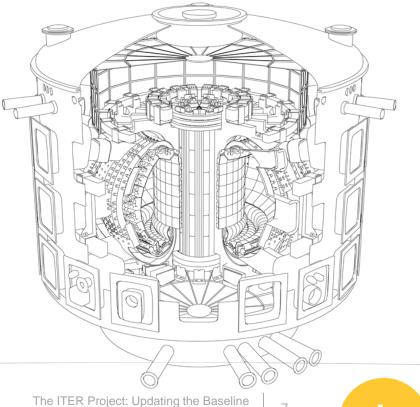

- The volume and weight of the ITER tokamak is nearly 10 times larger than the largest existing tokamaks.
- > <u>Example</u>: ITER will feature the largest magnet in the world by far.
 - > Atlas experiment (barrel toroid magnet) at CERN Large Hadron Collider
 - Guinness world record for largest current magnet
 - Cold mass of 370 tonnes
 - Operates at 4 Tesla
 - Stores 1.08 Gigajoule of energy
 - > ITER's largest magnet, the combined toroidal field coils (just completed):
 - Cold Mass >6000 tonnes
 - > Operates at 12 Tesla
 - Stores 41 Gigajoules of energy

WHY DOES ITER NEED TO UPDATE ITS BASELINE?

- What is a Baseline? A project baseline is a reference project plan that includes agreed scope, schedule, and cost, against which progress and performance are to be measured.
- > The previous plan the Baseline designed in 2016 has not been feasible for a few years
 - Since October 2020, it was made clear publicly and to our stakeholders that First Plasma in 2025 was no longer achievable
- ➤ Why?
 - Covid-19 pandemic
 - Shut down some factories, reduced workforce, and triggered other impacts, e.g.: maritime shipping, quality inspection.
 - Challenges of First-of-a-Kind components (as mentioned)
 - > Quality issues: in design, manufacturing, project culture
 - Including some key components requiring repairs as previously reported
 - Planning too optimistically for some aspects of manufacturing and assembly

PRIMARY TECHNICAL GOALS (MISSION ELEMENTS) OF THE ITER PROJECT


- > To demonstrate the **integration of systems** needed for industrial-scale fusion operations
- ➢ To achieve Q≥10: 500 MW of thermal fusion power output for 50 MW of heating power input to the plasma, in 400-second pulses, reaching thermal equilibria in plasma and in structures
- ➢ Over time: to achieve a Q≥5 at steady state operation


COMPARISON OF PREVIOUS BASELINE AND NEW BASELINE APPROACHES

- ➢ 2016 Baseline
 - > Designed to reach **First Plasma** any symbolic plasma experiment **as rapidly as possible**
 - > Constrained by the fact that some key components would not be available
 - Sub-optimal result:
 - First Plasma scheduled for 2025: a brief, low-energy machine test (100 kiloAmperes)
 - > To be followed immediately by assembly and operation in four successive stages
 - Reaching full plasma current in 2032-33 (=15 MegaAmperes, 150x higher current than in Baseline 2016 First Plasma)
 - > Why? Key additional components were not available for assembly before 2025
 - Divertor (absorbing high heat loads)
 - Shield blocks (protecting the vacuum vessel)
 - ➢ Etc.

COMPARISON OF PREVIOUS BASELINE AND NEW BASELINE APPROACHES

- Considerations for the New Baseline
 - > Could have kept the Baseline 2016 roadmap, but this would have now been illogical
 - > Why? More components available to construct a more complete machine
 - > Therefore: <u>redesign</u> to prioritize the **Start of Research Operations**
 - > Make up for past delays, as much as possible
 - Understand and correct the causes of delays
 - Incorporate risk-reducing components
 - > Start operation with a more complete machine
 - Reorganize internally to meet the challenges and enhance project quality culture
 - More robust way to achieve ITER's performance goals

HOW DOES THE NEW BASELINE PRIORITIZE PROJECT GOALS?

- 1. Start of Research Operations (SRO)
 - Installation of key components
 - Divertor: experiences the highest heat loads
 - Shield blocks: part of the blanket that protects the Vacuum Vessel
 - Will feature Hydrogen and Deuterium-Deuterium plasmas
 - Will culminate in operating the tokamak in long pulses at Full Magnetic Energy (FME) and Plasma Current
 - > Will largely demonstrate the integration of systems needed for industrial-scale fusion operations
- 2. Overall plan developed to mitigate operational risks, also in preparation for DT Operations, e.g.
 - > Additional testing of some Toroidal Field and Poloidal Field coils full current, at 4 Kelvin
 - More time dedicated to commissioning
 - > An initial sacrificial "first wall," to be used up to full plasma current
 - More heating systems added, simulating in SRO divertor heat loads later expected in DT
 - > Fully test all systems, disruption mitigation, etc.

COMPARISON OF SCHEDULES: PREVIOUS BASELINE vs NEW BASELINE

2016 Baseline

- First Plasma 2025: brief, low-energy machine test, minimal scientific value
 Followed by four further stages of assembly/construction
- ➢ Full plasma Current: targeted in 2033

New Baseline

- Start of Research Operation (SRO): now targeted in 2034
 - More complete machine
 - > 27 months of substantive research
- ➤ Full Magnetic Energy will be ~3 years delayed from the previous baseline, from 2033 to **2036**.
- Start of Deuterium-Tritium Operation Phase will be ~4 years delayed from the previous baseline, originally targeted in 2035, now 2039.

A FURTHER KEY FEATURE OF THE NEW BASELINE

- > Will use Tungsten instead of Beryllium for the First Wall (plasma-facing material)
 - > Tungsten is more relevant for future "DEMO" machines and eventual commercial fusion devices
- > A two-phase "safety demonstration"
 - ➢ First DT operation phase (DT-1): Q≥10, but at a low neutron fluence (~1% of project specification).
 - > Enables understanding of the profile of neutron distribution and radiation mapping
 - Will facilitate DT-2 operations (at full fluence) with greater regulatory confidence and more realistic safety margins

RECENT (GOOD!) NEWS FROM ITER

Sector #7 Build-Up + NDE and Machining ongoing

Thermal Shields repair/re-manufacturing activities on-going

Sector #5 before starting repair activity (courtesy Mangiarotti)

RECENT (GOOD!) NEWS FROM ITER

ITER Private Sector Fusion Workshop (27-29 May 2024)

Celebration of the reception of all 19 TF coils (01 July 2024)

Celebration of the reception of all EU PF coils (21 June 2024)

Thank you!

china eu india japan korea russia usa